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Abstract

The gap between discovered protein sequences and experimentally verified functions is growing

rapidly. Traditional methods often fail to predict functions for new proteins that lack close evo-

lutionary relatives. To address this, we combine the ProtT5 and ESM-2 protein language models

to capture deep evolutionary and structural signals from sequence data. We train a neural network

using a non-negative Positive-Unlabeled (nnPU) loss, which correctly treats missing annotations as

”unknown” rather than ”negative.” We also apply post-processing to ensure our predictions respect

the biological hierarchy of the Gene Ontology. Finally, we evaluate our model using ”scaffold

splits” to strictly separate protein families between training and testing. The results confirm our

hypothesis: our model generalizes effectively to these completely new sequences, demonstrating

that our approach learns meaningful biology rather than just memorizing training data.
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Introduction

Proteins are fundamental to biological processes, yet the rapid explosion of genomic data has cre-

ated a vast gap between known sequences and experimentally verified functions [1]. Traditional

homology-based methods often struggle in this setting, especially for proteins that lack close evo-

lutionary neighbors, leaving many sequences uncharacterized where functional inference matters

most [2].

Recent advancements in natural language processing (NLP), particularly Transformer architec-

tures, offer a promising alternative [3]. These models can learn contextual embeddings that cap-

ture evolutionary, structural, and functional signals directly from sequence, enabling functional

inference even when no close homologs exist.

In this work, we investigate whether protein language model (PLM) embeddings, paired with

lightweight neural classifiers and simple ontology-aware constraints, can improve function predic-

tion in a CAFA-style evaluation framework [4]. We combine the complementary sequence-level

representations of ProtT5 and ESM-2 into a unified feature vector [5, 6]. Our goal is to evaluate

the extent to which contemporary sequence models can help close the widening gap between rapid

sequence discovery and slow experimental annotation.

Background

Gene Ontology

The Gene Ontology (GO) is a structured, species-agnostic vocabulary designed to unify descrip-

tions of gene product function across the tree of life [7, 8]. GO is organized as a directed acyclic

graph (DAG) where each node corresponds to a biological concept (GO term) and edges capture

relationships such as is a or part of.

GO is divided into three disjoint sub-ontologies, each representing a different dimension of bio-
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logical knowledge:

• Biological Process (BP): Coordinated biological programs.

• Molecular Function (MF): Elementary biochemical activities, e.g.

• Cellular Component (CC): Locations or complexes where functions occur.

In this work, we focus exclusively on predicting GO terms present in the fixed ontology release

used by the CAFA6 challenge.

Protein Language Models

Protein language models (PLMs) apply large-scale self-supervised learning to unlabeled protein

sequences, enabling them to learn contextual representations that capture evolutionary, structural,

and functional directly from sequences [9].

In this project we use two state-of-the-art PLMs, ESM-2 and ProtT5, to generate fixed-length

sequence embeddings for downstream GO prediction. using both models provides complementary

information that can improve predictive performance.

Taxonomy

Taxonomic information provides an evolutionary context that complements sequence-based rep-

resentations. Closely related organisms tend to share functional pathways, making taxonomy a

coarse but biologically meaningful prior on GO term likelihoods.

We use organism identifiers from the NCBI Taxonomy database, a curated, hierarchical classifica-

tion that links each taxon to its parent and reflects the current phylogenetic consensus [10]. This

structure supports the idea that evolutionary relatedness can inform function prediction beyond

what is captured by sequence similarity alone.
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CAFA6 Dataset

The CAFA6 dataset [4] provides GO annotations for supervised training along with an evalua-

tion framework that mimics how biological knowledge emerges over time. Unlike static bench-

marks, CAFA evaluates predictions on proteins that acquire new experimental annotations only

after model submission, meaning that models must predict both new functions for previously char-

acterized proteins and functions for entirely new proteins appearing in the test superset. This

forward-looking design offers a realistic test of a model’s ability to generalize beyond the current

annotation landscape.

Methods

Dataset Construction

The CAFA6 training dataset consists of 82,404 proteins with experimentally supported GO an-

notations. Each protein appears exactly once in the training set, with 81,183 unique amino acid

sequences and 1,221 duplicated sequences. Sequence lengths range from 3 to 35,213 residues,

with a median length of 409. The distribution is dominated by moderately sized proteins, and

more than 98% of sequences fall below 2,048 amino acids, making them compatible with standard

protein language model (PLM) embedding procedures.

GO Term Selection. The full training set includes 26,125 distinct GO terms across the three on-

tologies. Because many terms are extremely rare, we restrict prediction to the 1,024 most frequent

terms to prevent severe sparsity in the multi-label setting. This subset covers the overwhelming ma-

jority of annotated term–protein pairs in the training set while preserving representation of diverse

biological functions.
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Positive-Unlabeled (PU) Learning

GO annotation is an asymmetric problem: experimentally verified annotations are reliable positives

(P ), while unannotated entries are unlabeled (U ) mixtures of true negatives and hidden positives.

Treating U as negative introduces label noise. To address this, we minimize the non-negative PU

(nnPU) risk [11].

Let x be a protein embedding and y ∈ {+1,−1} the true label. We observe s = 1 if labeled, and

s = 0 otherwise. The unbiased risk estimator decomposes the total risk R(f) into positive and

negative components using the class prior πp = P (y = +1):

RPU(f) = πpR
+
p (f) +R−

u (f)− πpR
−
p (f) (1)

where R−
u is the risk on unlabeled data treated as negative. To prevent overfitting on unlabeled data

from driving the risk estimate negative, we employ the non-negative correction:

R̂nnPU(f) = πpR̂
+
p (f) + max

(
0, R̂−

u (f)− πpR̂
−
p (f)

)
(2)

This formulation ensures the model treats unlabeled data as ambiguous rather than definitively

negative.

Taxonomy Integration. Each protein is associated with a species-level NCBI taxonomic iden-

tifier. The training set spans 1,381 unique taxa with a median of two proteins per taxon. To

incorporate evolutionary context, we map each taxon ID to a learned 32-dimensional embedding

vector that is concatenated with PLM-based sequence features.

Sequence Preprocessing. Protein sequences exceeding 8,000 residues were divided into con-

tiguous chunks to fit within model limits for PLM embedding. The chunk embeddings were aver-

aged to produce a single fixed-length representation per protein. This approach preserves global
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functional signal while accommodating rare extremely long sequences. All other sequences were

embedded directly in full length.

Summary of Data Distributions. The final training set contains 537,027 protein–term anno-

tation pairs and covers a wide range of eukaryotic and prokaryotic species. A large fraction of

proteins originate from a small number of model organisms (e.g., Homo sapiens, Mus musculus,

and Arabidopsis thaliana), while the long tail consists of hundreds of taxa with only one or two

representatives. The test superset contains 224,309 proteins drawn from 8,453 unique taxa, many

of which do not appear in the training set, requiring models to generalize to novel sequences and

species.

Dataset and Preprocessing

We utilized the CAFA 6 training set derived from the Swiss-Prot database. The target labels are

GO terms divided into three sub-ontologies: Molecular Function (MF), Biological Process (BP),

and Cellular Component (CC).

• Filtering: Sequences longer than 1024 residues were excluded to fit memory constraints.

• Label Encoding: We selected the top N most frequent GO terms for each sub-ontology to

create a computationally manageable target vector.

Feature Extraction: Protein Language Models

Instead of training from scratch, we utilized Transfer Learning. We extracted features using two

distinct architectures:

1. ESM-2 (Evolutionary Scale Modeling): A transformer-based model trained on evolution-

ary patterns across millions of sequences.

2. ProtT5: A T5-based encoder-decoder model optimized for sequence-to-function translation.
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We froze the weights of these pre-trained models and extracted the final hidden state representa-

tions (embeddings) for each sequence. These embeddings represent the semantic features of the

amino acid chains.

Classification Model

We implemented a Multi-Layer Perceptron (MLP) as the classification head.

• Input: Concatenated embeddings from ESM-2 and ProtT5 (Dimension size: Desm +Dt5).

• Architecture: Two hidden layers with ReLU activation, followed by Batch Normalization

and Dropout (p = 0.3) to prevent overfitting.

• Output: A sigmoid activation layer producing probabilities for each GO term.

Hierarchical Post-Processing

Raw neural network outputs often violate GO constraints (e.g., predicting a child term with higher

probability than its parent). We implemented a consistency enforcement step. Let P (t) be the

predicted probability of term t. We iterated through the GO graph structure provided in the

go-basic.obo file. For every parent term p and child term c, we enforced:

P (p)final = max(P (p)raw, P (c)raw)

This ensures that the score of a general term is never lower than the score of its specific descen-

dants.
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Results

Kaggle Evaluation Procedure.

Model performance is assessed using the CAFA-style, time-delayed evaluation framework. At

submission time, t0, the training set is composed of all known Gene Ontology (GO) annotations.

The Kaggle competition then commences a waiting period. After this period, all proteins that

accumulated new experimentally validated GO annotations between t0 and the evaluation time t1

were selected as benchmarks. This yields three independent benchmark sets—one each for Molec-

ular Function (MF), Biological Process (BP), and Cellular Component (CC)—where a protein is

included in an ontology’s benchmark if and only if it gained new experimental annotations in that

ontology during (t0, t1]. A protein may therefore appear in multiple benchmark sets. Any annota-

tion that appears in the training data is given weight 0, so the test values reflect the model’s ability

to predict unseen annotations.

Information-Accretion Weights. Each GO term f is assigned an information-accretion weight

ia(f), equivalent to the information content ic(f). These weights, provided by the organizers,

reflect the rarity and specificity of GO terms: root-level terms receive weight 0, while deep, rarely

observed terms receive larger weights. [12]

Weighted Precision and Recall. For a score threshold τ ∈ [0.01, 1.00], let Pi(τ) be the set of

terms predicted for protein i with score ≥ τ , and let Ti be its experimentally verified GO terms

(expanded by the ontology closure). Weighted precision and weighted recall are defined as:

pr(τ) =
1

m(τ)

m(τ)∑
i=1

∑
f∈Pi(τ)∩Ti

ia(f)∑
f∈Pi(τ)

ia(f)
, (3)

rc(τ) =
1

ne

ne∑
i=1

∑
f∈Pi(τ)∩Ti

ia(f)∑
f∈Ti

ia(f)
. (4)
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Here, m(τ) is the number of benchmark proteins for which the method makes at least one predic-

tion at threshold τ , and ne is the total number of proteins used for evaluation.

Maximum Weighted F-measure. Each ontology is summarized using the maximum information-

weighted F-measure, over all thresholds:

Fmax = max
τ

(
2 pr(τ) rc(τ)

pr(τ) + rc(τ)

)
. (5)

Final Score. Each submission yields three Fmax values (MF, BP, and CC). The competition’s

overall performance score is the arithmetic mean:

SK =
1

3

(
FMF
max + FBP

max + FCC
max

)
. (6)

This is the procedure used to test Kaggle submissions. [12]

Our Evaluation Procedure

To investigate how data partitioning affects model generalization, we trained two models under

different splitting strategies: a random split model mr and a scaffold split model ms. Our primary

objective was to assess the extent to which each model relied on sequence memorization versus

learned, biologically meaningful representations.

We evaluated both models on two categories of test sets. The first category consisted of proteins

held out entirely from training—both their sequences and GO annotations were unseen. Because

the held-out sets differed between the two partitioning strategies, we denote them tr (for the random

split) and ts (for the scaffold split). As seen in table 1, mr performed better on its own held-out set

tr, since random partitioning often places homologous or near-identical proteins across the train

and test sets. Such homology leakage enables mr to succeed through implicit memorization of

family-level similarity rather than through learning generalizable sequence–function relationships.
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In contrast, ms faced a more challenging held-out set ts: the scaffold split enforces family-level

separation, reducing trivial nearest-neighbor matching and providing a more realistic estimate of

functional generalization.

(a) Weighted F-measure vs. τ for ms evaluated
on held out set ts

(b) Weighted F-measure vs. τ for mr evaluated
on held out set tr

Table 1: Fmax scores evaluated on tr and ts

Random Scaffold
Overall 0.521 0.494

BP 0.336 0.314
CP 0.685 0.663
MF 0.543 0.504

The second evaluation set, denoted tk, was the Kaggle challenge set. Unlike the first category, tk

includes not only entirely unseen proteins but also proteins previously observed during training

that have since been annotated with newly acquired GO terms. This setting therefore evaluates a

model’s ability to generalize beyond its training label space, predicting novel functions for familiar

sequences. Under this regime, we expect that the scaffold-trained model ms would outperform mr,

as the scaffold split forces the model to learn higher-level sequence–function relationships rather

than exploiting memorized family-level similarity.

The results support this expectation: on tk, ms exceeds mr by 0.031 weighted Fmax, correspond-

ing to an improvement of over 20% relative to mr. This gap indicates that the inductive biases

introduced by scaffold splitting—namely reduced homology leakage and stronger pressure toward
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Figure 2: Kaggle weighted Fmax scores (SK) for random split model mr and scaffold split model
ms.

learning transferable representations—lead to improved generalization when models must predict

functions that extend beyond the exact annotation patterns seen during training.

Discussion

A key challenge revealed by our experiments is the difficulty of achieving robust generalization

across both sequence and taxonomic diversity. While scaffold splitting reduces direct homology

leakage, many test proteins come from taxa largely absent in the training set, making taxon-aware

modeling essential for realistic functional prediction. Our simple learned taxonomy embedding

captures broad lineage structure but does not fully represent deep evolutionary relationships, lim-

iting performance on unseen species. Future work should explore hierarchical or graph-based

taxonomy encodings and evaluate taxon-conditioned models to better handle out-of-distribution

species.

Another limitation concerns label selection. Restricting training to the top 1024 GO terms im-

proves tractability but may obscure meaningful functions in the long tail. More principled strate-

gies—such as leveraging information-accretion weights or dynamically selecting terms based on

ontology structure—could lead to denser, better-calibrated supervision. Relatedly, temporal hold-
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out evaluation highlights that incompleteness of GO remains a central issue; refining label selection

to emphasize well-curated branches may reduce noise and improve downstream robustness.

Methodologically, our work evaluated only one architecture (a shallow MLP over concatenated

PLM embeddings). Testing multiple architectures would provide a clearer view of what inductive

biases matter for GO prediction. Promising directions include models that integrate structure (e.g.,

AlphaFold features), graph neural networks that operate directly over the GO DAG, and deeper

multimodal ensembles that fuse sequence, taxonomy, and predicted structure.

Overall, our findings highlight both the promise and the limitations of using multimodal protein

language model embeddings for large-scale GO prediction. While our baseline model demon-

strates meaningful generalization under more realistic scaffold-based evaluation, substantial room

remains for improvement in handling taxonomic diversity, capturing rare functional labels, and

designing architectures that more effectively integrate biological structure.
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